CS370 Midterm Cheat Sheet
FP Number System

Specific floating point system: {3,t,L,U}.
IEEE single precision (32 bits:)

mantissa = 23 bit
exponent = 7 bits

matissa sign = 1 bit
exponent sign = 1 bit

Relative error: E..; = Equps / |Tezact]-
A result is correct to roughly s digits if

05x107°5 < Eppy <5x107°

Machine epsilon: the smallest value E such that
fl(1+ E) > 1 under the given FP system.

FP Addition: w® z = fl(w + z) = (w + 2)(1 + §) with
|6] < E. Note that it is NOT true that

(a®db)dc=a®(bDc)

Interpolation

Unisolvence: Given n data pairs (z;,y;), ¢ = 1,...,n with
distinct z;, there is a unique polynomial p(z) of degree <n —1
that interpolates the data.

For polynomial interpolation, we have Vandermonde matrix:

1 1 .’Eln_l (&1 Y1
1 z9 I2n71 Cc2 Y2
1 @y - xp™?t '

" " Cn Yn

and Langrange form:

p(x) =y1L1(z) +y2La(z) 4+ -+ ynLln(z) = ZyiLi(w)

Runge’s phenomenon suggests that we need to use other
methods for high-order polynomials.

Piecewise Hermite

Hermite Interpolation: fitting function values and
derivatives.
For piece wise Hermite, we have

pi(x) = a; + bi(z — ;) + ci(x — ;) + di(x — x;)3

where
@ = u; o = By’ =28 —siv1
£ 1 T AZ‘Z
Sit1 + si — 2yi’
bi —_ dz — i+1 12 Yi
Ax;

Knots are points where the interpolant transitions from one
polynomial / interval to another.
Nodes are points where some control points/data is specified.

Cubic Splines

Fit a cubic, S;(z), on each interval, but now require matching
first and second derivatives between intervals.

¢ Clamped/ Complete: S’'(z1) and S’(zn) are specified;
e Free/ Natural: S”(z1) = S"(zn) = 0;
o Periodic: S'(z1) = S'(zn) and 5" (z1) = S (zn).

Derivation of Cubic Splines Equations

With clamped condition or free boundary condition:
s1+s2/2=23/2y} and sn_1/2+ sn =3/2y),_;, and

3Az; 1y’ +3Azyi—1’ = Axisi—q1 + Az_18,41 + 28 (Azi_1 +

Name LTE
Forward Euler Single | Explicit | O(h)
Improved Euler and Midpoint Single | Explicit | O(h?)
(2nd order Runge Kutta schemes)
4th Order Runge Kutta Single | Explicit | O(h
Trapezoidal Single | Implicit | O(h
Backwards/Implicit Euler (BDF1) | Single | Implicit | O(h
BDF2 Multi | Implicit | O(h
2-step Adams-Bashforth Multi Explicit | O(h
3rd order Adams-Moulton Multi | Implicit | O(h
Stability
Test Equation: y'(t) = —X - y(t), y(0) = yo, for constant
A6+
229 | A pply a given i
pply a given time stepping scheme to our test

fori=2,...

Parametric

IDEA: Let x and y each be a function of a new parameter t.
Two options:

1. Uset; =1

2. Set t; = 0 and compute
tivr = tin/(@is1 —)2 + (yit1 — vi)2.

ODE

Forward Euler: explicit, single-step.

1: Repeat until done:
2: y;‘L = f(tn,yn);

,n — 1 equation.
2. Find the closed form of its numerical solution and error
behavior.
3. Find the conditions on the timestep h that ensure

stability (error approaching zero).

Truncation Error and Adaptive Time Stepping
Given a time-stepping scheme, y,+1 = RHS
1. Replace approximations on RHS with exact versions.
e.g, yn — Y(tn) and f(tn+1,Yn+1) = ¥ (tn+1), etc.

2. Taylor expand all RHS quantities about time ¢, (if
necessary).

3. Taylor expand the exact solution y(tn+1) to compare
against.

4. Compute difference y(tn+1) — Yn+1. Lowest degree
non-canceling power of A gives the local truncation

, error.
3: yn+1:yn+h'yn
—h2
The (local truncation) error is Ty”(tn) +O0(h?) € O(h?).
h
Trapezoidal: y(tnt1) = yn + 5 [y'(tn_H) + y'(tn)] +0(h%).
h
Improved Y(tn+1) = yn + 5 [f(t,H_l, Yni1) + ftn, yn)] + O(h3)-
Forward
Euler:
Backward Ynt+1 = Yn + - F(tnt1,y,11)-
Euler:
! 1 2
BDF2: Yn+1 = gyn - gynfl + ghf(thrlyynJrl)-
3 T
Adams- Ynt1 = yn + Shf(tn,yn) = Shf(tn—1,yn—1)-
Bashforth:

Backward /Implicit Euler and Trapezoidal are unconditionally
stable.

Fourier
Some useful res%lts: " ” 0
e et e’ —e™"
COS(@) — % and, sin(@) = 27
i

We define Nt roots of unity to be W := exp (%), who:
Z Wwik—e) — Ny,
=0

Now we have our discrete fourier transform pair
(time-domain data fy, frequency domain Fk)N
_1 _

N 1
1
fr = Z FW™ and, F = ~ Z FaW Tk
k=0 n=0

e The sequence {F}} is doubly infinite and periodic. i.e.,
if we allow & < 0 or k > N — 1, the F} coefficients
repeat;

o If data fy is real, F, = Fn_k.-

However, this takes O(NQ) complex floating point operations,
so we introduce fast fourier transform:

1 1 —n2
gn:§<fn+fn+%> and, hnzi(fn_fn+%)w 3

ISR

5

6

8

4

There will be log2 N of these stages. Each stage requires O(N)

complex floating point operations.

Google Page

We first have our markov chain matrix P:
P, = {gegl(z) if i — j exists

otherwise

and if there is dead end, we let vector d to be such that d; = 1

if deg(é) = 0, and define 1
P =P+ EedT

in addition, to avoid closed cycles, we define
M=aP +(1- a)EeET

for some constant «. If M is a positive markov matrix, the
iteration
p>™ = lim (M"*)p°
k—oco

converges to a unique vector p*°, for any p°.

For k =1, ..., n // iterate over all rows

For i =k + 1, ..., n // iterate each row i below row k
mult := aik/akk // determine row i’s multi factor
aik := mult // store this factor
For j =k + 1, ..., n // iterate over all columns in the

row
aij := aij - mult * akj // subtract the scaled data

// Note that the resulting factors are stored back into A for space

The runtime (number of FLOPs) for the above algorithm is
2n3
% + O(n?).

Forward Solve: Solving Lz = b for z;

io:= zi - 1ij * zj

Backward Solve: Solving Uz = z for z;

For i =
xi @
For j

Moo B
"
Woe Tl
vl
"
B

xi - uij * x

Also remind you that

[All2 = / Amaz A* A

Condition number of a matrix A is defined as
r(A) = ||A[l- A7

If Kk = 1, then A is well-conditioned, else if k > 1, then A is
ill-conditioned.

Properties of condition numbers:
e k(A)>1
o w(A) = r(AT)
o Kk(A) = k(A¥)
o k(AT = kK(A)
e k(AB) < k(A) - k(B)
e k(A) =1 <= A is orthogonal/unitary (for 2-norm)

Omax (A)

' K(A) - Umin(A)

(for 2-norm)

The runtime (number of FLOPs) for the above algorithm is
n? + O(n).

Transpose of a permutation matrix is the same as its inverse.

Norm of vectors and n}f}‘lcarices are defined as

n
A
lally = { Y@ and, [|A]l = max 142
. lizli0 [l
i=1
and as a result, we have
n n
Al = maxy |4yl Alloo = max Y |As]
(— j=1

(max absolute column sum) (max absolute row sum)

Some facts:

o det(A —AI) =0 — eigenvalues;

o tr(A) = sum of eigenvalues;

e det(A) = product of eigenvalues;

e A invertible <= 0 not an eigenvalue;

e A diagonalizable <= n lin. indep. eigenvectors;
e Symmetric = diagonalizable w/ real eigenvalues;
o Triangular = eigenvalues = diagonal entries;

o Permutation matrix is orthogonal, PT = P~1.

	FP Number System
	Interpolation
	Piecewise Hermite
	Cubic Splines
	Derivation of Cubic Splines Equations
	Parametric

	ODE
	Stability
	Truncation Error and Adaptive Time Stepping

