CS370 Midterm Cheat Sheet

FP Number System

Specific floating point system: $\{\beta, t, L, U\}$. IEEE single precision (32 bits:)

matissa sign = 1 bit	mantissa = 23 bit
exponent $sign = 1$ bit	exponent = 7 bits

Relative error: $E_{rel} = E_{abs} / |x_{exact}|$. A result is correct to roughly s digits if

$$0.5 \times 10^{-s} \le E_{rel} \le 5 \times 10^{-s}$$

Machine epsilon: the smallest value E such that fl(1+E) > 1 under the given FP system.

FP Addition: $w \oplus z = fl(w+z) = (w+z)(1+\delta)$ with $|\delta| \leq E$. Note that it is **NOT** true that

$$(a \oplus b) \oplus c = a \oplus (b \oplus c)$$

Interpolation

Unisolvence: Given n data pairs (x_i, y_i) , i = 1, ..., n with distinct x_i , there is a unique polynomial p(x) of degree $\leq n-1$ that interpolates the data.

For polynomial interpolation, we have Vandermonde matrix:

$$\begin{bmatrix} 1 & x_1 & \cdots & x_1^{n-1} \\ 1 & x_2 & \cdots & x_2^{n-1} \\ & & \cdots \\ 1 & x_n & \cdots & x_n^{n-1} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

and Langrange form:

$$p(x) = y_1 L_1(x) + y_2 L_2(x) + \dots + y_n L_n(x) = \sum_i y_i L_i(x)$$

Runge's phenomenon suggests that we need to use other methods for high-order polynomials.

Piecewise Hermite

Hermite Interpolation: fitting function values and derivatives.

For piece wise Hermite, we have

$$p_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

where

$$a_i = y_i$$

$$c_i = \frac{3y_i' - 2s_i - s_{i+1}}{\Delta x_i}$$

$$b_i = s_i$$

$$d_i = \frac{s_{i+1} + s_i - 2y_i'}{\Delta x_i^2}$$

Knots are points where the interpolant transitions from one polynomial / interval to another.

Nodes are points where some control points/data is specified.

Cubic Splines

Fit a cubic, $S_i(x)$, on each interval, but now require matching first and second derivatives between intervals.

- Clamped/ Complete: $S'(x_1)$ and $S'(x_n)$ are specified;
- Free/ Natural: $S''(x_1) = S''(x_n) = 0$;
- Periodic: $S'(x_1) = S'(x_n)$ and $S''(x_1) = S''(x_n)$.

Derivation of Cubic Splines Equations

With clamped condition or free boundary condition: $s_1 + s_2/2 = 3/2y_1'$ and $s_{n-1}/2 + s_n = 3/2y_{n-1}'$, and

Name			LTE
Forward Euler	Single	Explicit	O(h)
Improved Euler and Midpoint	Single	Explicit	$O(h^2)$
(2nd order Runge Kutta schemes)			
4th Order Runge Kutta	Single	Explicit	$O(h^4)$
Trapezoidal	Single	Implicit	$O(h^2)$
Backwards/Implicit Euler (BDF1)	Single	Implicit	O(h)
BDF2	Multi	Implicit	$O(h^2)$
2-step Adams-Bashforth	Multi	Explicit	$O(h^2)$
3rd order Adams-Moulton	Multi	Implicit	$O(h^3)$

Stability

Test Equation: $y'(t) = -\lambda \cdot y(t)$, $y(0) = y_0$, for constant

$$\frac{3\Delta x_{i-1}y_{i}' + 3\Delta x_{i}y_{i-1}' = \Delta x_{i}s_{i-1} + \Delta x_{i-1}s_{i+1} + 2s_{i}(\Delta x_{i-1} + \Delta x_{i})}{\text{for } i = 2, \dots, n-1 \text{ equation.}} \text{Apply a given time stepping scheme to our test}$$

Parametric

IDEA: Let x and y each be a function of a new parameter t. Two options:

- 1. Use $t_i = i$
- 2. Set $t_1 = 0$ and compute $t_{i+1} = t_i \sqrt{(x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2}$

ODE

Forward Euler: explicit, single-step.

- 1: Repeat until done:
- 2: $y'_n = f(t_n, y_n);$ 3: $y_{n+1} = y_n + h \cdot y'_n$

The (local truncation) error is $\frac{-h^2}{2!}y''(t_n) + O(h^3) \in O(h^2)$.

_	1									
2.	Find	the	closed	form	of	its	numerical	solution	and	error
	behavior.									

3. Find the conditions on the timestep h that ensure stability (error approaching zero).

Truncation Error and Adaptive Time Stepping

Given a time-stepping scheme, $y_{n+1} = RHS$

- 1. Replace approximations on RHS with exact versions. e.g, $y_n \to y(t_n)$ and $f(t_{n+1}, y_{n+1}) \to y'(t_{n+1})$, etc.
- 2. Taylor expand all RHS quantities about time t_n (if
- 3. Taylor expand the exact solution $y(t_{n+1})$ to compare
- 4. Compute difference $y(t_{n+1}) y_{n+1}$. Lowest degree non-canceling power of h gives the local truncation error.

$$\begin{array}{ll} \textbf{Trapezoidal:} & y(t_{n+1}) = y_n + \frac{h}{2} \left[y'(t_{n+1}) + y'(t_n) \right] + O(h^3). \\ \\ \textbf{Improved} & y(t_{n+1}) = y_n + \frac{h}{2} \left[f(t_{n+1}, y_{n+1}^*) + f(t_n, y_n) \right] + O(h^3). \\ \\ \textbf{Forward} & \\ \textbf{Euler:} & \\ \textbf{Backward} & y_{n+1} = y_n + h \cdot f(t_{n+1}, y_{n+1}). \\ \\ \textbf{Euler:} & \\ \textbf{BDF2:} & y_{n+1} = \frac{4}{3} y_n - \frac{1}{3} y_{n-1} + \frac{2}{3} h f(t_{n+1}, y_{n+1}). \\ \\ \textbf{Adams-} & y_{n+1} = y_n + \frac{3}{2} h f(t_n, y_n) - \frac{1}{2} h f(t_{n-1}, y_{n-1}). \\ \\ \textbf{Bashforth:} & \\ \end{array}$$

Backward/Implicit Euler and Trapezoidal are unconditionally stable.

Fourier

Some useful results: $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} \qquad \text{and,} \qquad \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

We define N^{th} roots, of unity to be $W := \exp\left(\frac{2\pi i}{N}\right)$, who:

$$\sum_{j=0} W^{j(k-\ell)} = N\delta_{k,\ell}$$

Now we have our discrete **fourier transform** pair (time-domain data f_n , frequency domain F_k): N-1

$$f_n = \sum_{k=0}^{N-1} F_k W^{nk}$$
 and, $F_k = \frac{1}{N} \sum_{n=0}^{N-1} f_n W^{-nk}$

- The sequence {F_k} is doubly infinite and periodic. i.e., s
 if we allow k < 0 or k > N 1, the F_k coefficients
 repeat;
- If data f_n is real, $F_k = \overline{F_{N-k}}$.

However, this takes $O(N^2)$ complex floating point operations, so we introduce **fast fourier transform**:

$$g_n = \frac{1}{2} \left(f_n + f_{n+\frac{N}{2}} \right)$$
 and, $h_n = \frac{1}{2} \left(f_n - f_{n+\frac{N}{2}} \right) W^{-n\frac{1}{2}}$

There will be log2 N of these stages. Each stage requires O(N) complex floating point operations.

Google Page

We first have our markov chain matrix P

$$P_{ij} = \begin{cases} \frac{1}{\deg(i)} & \text{if } i \to j \text{ exists} \\ 0 & \text{otherwise} \end{cases}$$

and if there is dead end, we let vector d to be such that $d_i = 1$ if $\deg(i) = 0$, and define

$$P' = P + \frac{1}{R}ed^T$$

in addition, to avoid closed cycles, we define

$$M = \alpha P' + (1 - \alpha) \frac{1}{R} e e^{T}$$

for some constant α . If M is a positive markov matrix, the iteration

$$p^{\infty} = \lim_{k \to \infty} (M^k) p^0$$

converges to a unique vector p^{∞} , for any p^0 .

NLA

If
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ \hline g & h & i \end{bmatrix} = LU$$
, then
$$L = \begin{bmatrix} 1 & 0 & 0 \\ d & 1 & 0 \\ g & h & 0 \end{bmatrix} \text{ and } U = \begin{bmatrix} a & b & c \\ 0 & e & f \\ 0 & 0 & i \end{bmatrix}$$
. LU factorization:

The runtime (number of FLOPs) for the above algorithm is

$$\frac{2n^3}{3} + O(n^2).$$

Forward Solve: Solving Lz = b for z;

Backward Solve: Solving Ux = z for x;

The runtime (number of FLOPs) for the above algorithm is $n^2 + O(n)$.

Transpose of a permutation matrix is the same as its inverse.

Norm of vectors and matrices are defined as

$$||x||_p = \left(\sum_{i=1}^n x_i^p\right)^{1/p}$$
 and, $||A|| = \max_{||x|| \neq 0} \frac{||Ax||}{||x||}$

and as a result, we have

$$\|A\|_1 = \max_{j} \sum_{i=1}^{n} |A_{ij}| \qquad \|A\|_{\infty} = \max_{i} \sum_{j=1}^{n} |A_{ij}|$$
(max absolute column sum) (max absolute row sum

Also remind you that

$$||A||_2 = \sqrt{\lambda_{max} A^* A}$$

Condition number of a matrix A is defined as

$$\kappa(A) = ||A|| \cdot ||A^{-1}||$$

If $\kappa \approx 1$, then A is well-conditioned, else if $\kappa \gg 1$, then A is ill-conditioned.

Properties of condition numbers:

- $\kappa(A) > 1$
- $\kappa(A) = \kappa(A^T)$
- $\kappa(A) = \kappa(A^*)$
- $\kappa(A^{-1}) = \kappa(A)$
- $\kappa(AB) \le \kappa(A) \cdot \kappa(B)$
- $\kappa(A) = 1 \iff A \text{ is orthogonal/unitary (for 2-norm)}$
- $\kappa(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}$ (for 2-norm)

Some facts:

- $\det(A \lambda I) = 0 \rightarrow \text{eigenvalues};$
- tr(A) = sum of eigenvalues;
- det(A) = product of eigenvalues;
- A invertible \iff 0 not an eigenvalue;
- A diagonalizable \iff n lin. indep. eigenvectors;
- Symmetric ⇒ diagonalizable w/ real eigenvalues;
- Permutation matrix is orthogonal, $P^T = P^{-1}$.